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Synopsis 

Hardened cement pastes with water-to-cement (WIG) ratios of 0.4 and 0.6 and hydration times of 
one, three, seven, and 28 days were oven dried and subsequently impregnated with an epoxy resin 
formulation which was then polymerized in situ a t  75OC. Portland cement mortars containing 
Ottawa sand and asbestos fibers as filler were also subjected to this impregnation process. Dynamic 
elastic moduli (E’) were measured at  audio frequencies over a range of temperatures (100-400°K). 
Experimental values were compared with moduli calculated using various theoretical approaches 
based on two-phase composite materials theory. Best agreement between experimental and cal- 
culated results occurs when Wu’s theory for spherical polymer inclusions was applied to a cement- 
based matrix. In the case of polymer-impregnated mortars, experimental and theoretical results 
are in closest agreement a t  low temperatures and a t  low volume fraction of filler. 

INTRODUCTION 

Polymer-impregnated cement paste (PICP) belongs to a class of composite 
materials where both matrix and filler materials are continuous and intercon- 
nected phases. Due to the extreme complexity of the material, an analytical 
solution for the elastic modulus of the composite is not available. For this reason, 
various approaches have been taken toward modification of existing theories 
which deal with discrete two-phase composites. In fact, Krockl has shown that, 
over the same concentration range, dispersed particle and continuous skeleton 
metallic composites show no significant difference in elastic moduli. 

In their studies of polymer-impregnated metallic foams, White and Van Vlack2 
found that the composite moduli roughly followed Kerner’s t h e ~ r y . ~  Auskern 
and Horn4 have applied a model proposed by Hobbs5 to describe the elastic 
properties of PICP. Hasselman et a1.6 have considered stress concentration 
effects in a modification of Hashin’s theory7 to cover the case of polymer-im- 
pregnated ceramics. 

Whiting and Kline8 have shown that a significant amount of the total porosity 
of hardened cement paste (HCP) remains unfilled by polymer, especially in more 
mature cements. This, in effect, creates a three-phase composite, the third phase 
being the unfilled voids. In addition, the effects of filler size and geometry can 
also affect the elastic modulus. The theory of Wu9 takes some of these param- 
eters into account and therefore lends itself to the present problem. It  is the 
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aim of the present study to review the major theories in detail and to test them 
against experimental results on epoxy-impregnated cements and mortars. 

EXPERIMENTAL 

Sample Preparation 

All pastes and mortars were prepared using Type 1 portland cement. Pastes 
were prepared by adding the required amount of water to the cement and hand 
mixing for 2 min. Specimens with wlc = 0.4 were prepared by troweling the fresh 
paste into a rectangular PVC mold 0.635 cm X 0.762 cm x 12.7 cm in dimensions. 
Six samples could be prepared a t  one time. Pastes of w/c  = 0.6 were too fluid 
to be troweled and were therefore poured vertically into the molds, which were 
then sealed with a PVC lid. The molds were precoated with a mixture of wax 
and oil to facilitate demolding procedures. 

Mortar specimens were formed in a similar manner, except that in this case 
all specimens were formed by troweling. Mix proportions for the mortars pre- 
pared are presented in Table I. 

After casting, the pastes and mortars were placed in a fog room (100% R.H.) 
near 2OoC for 20-24 hr. The castings were then carefully demolded and placed 
in a saturated limewater solution for the duration of the desired period of hy- 
dration. All hydration was carried out at ambient laboratory temperatures 
(1 8-25"C). 

After the specimens had reached the desired maturity, they were removed from 
the limewater, trimmed to a length of 10.2 cm, and placed in a vacuum oven at  
75°C. Samples were continuously evacuated until loss of water equivalent to 
1 mg/g of paste per day had been achieved. This process lasted approximately 
72 hr. A cold trap contained in a Dewar flask filled with liquid nitrogen (bp = 
81°K) was used to maintain a constant vapor pressure above the samples. A t  
the end of the drying period, the samples were placed in sealed mason jars con- 
taining a small quantity of desiccant to prevent any adsorbtion of water. 

Epon 828, a diglycidal ether of bisphenol A, was chosen as the monomer in this 

TABLE I 
Mix Proportions for Mortars 

Ottawa Sand Mortars (Variable uf) 

Uf = 0.1 Uf = 0.2 U f =  0.4 uf = 0.6 
w/c = 0.4 w/c = 0.4 wlc = 0.4 w/c = 0.6 

Cement, g 100 100 100 100 
Sand, g 20.6 46.3 123 355 
Water, g 40 40 40 60 

Asbestos Fiber Mortars (Variable u,-) 

U f =  0.052 u f =  0.094 ~ f =  0.139 U f =  0.189 
wlc = 0.6 w/c = 0.67 WIC = 1.10 w/c = 2.30 

Cement, g 100 75 50 30 

Water, g 60 50 55 68.9 
Asbestos, g 1 5  22.9 34.4 54.9 
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TABLE I1 
Porosity of Hardened Cement Pastes 

W I C  Maturity, days Total porosity, % 

0.4 

0.6 

1 
3 
7 

28 
1 
3 
7 

28 

47.5 
44.5 
40.3 
37.0 
54.4 
51.5 
50.5 
48.2 

case, owing to its low shrinkage on cure and relatively low vapor pressure. 
Formulation of the epoxy resin system is discussed in the Appendix. 

A detailed description of the impregnation apparatus is given by Whiting.lo 
Samples are placed in the impregnation chamber and evacuated to a pressure 
of 100 microns. Monomer is then introduced into the chamber and allowed to 
completely cover the samples. The system is then brought up to 200 psig pres- 
sure with compressed nitrogen. Specimens were kept under pressure for 8 hr. 
At  the end of this period, samples were removed from the chamber, weighed, and 
subjected to the appropriate polymerization procedure. 

Epoxy-impregnated specimens were given time to gel at  ambient temperature 
(24 hr). They were then placed in a laboratory oven at  75OC for an additional 
24 hr, and subsequently removed from the oven and allowed to cool slowly to 
room temperature. Samples were stored in sealed test tubes prior to testing. 

For determination of the modulus of the bulk epoxy resin, the resin was cast 
into %-in. glass tubes, sealed, and cured under the conditions described above. 

Porosity Measurements 
Porosities of the cement paste specimens were determined by the method of 

Copeland and Hayes.ll Total porosity (q) data on representative specimens 
are presented in Table 11. 

Porosity of the mortars was determined simply from the water removed from 
the samples during oven drying at  75OC for 72 hr. Porosity (%) in this case is 
expressed as 

(1) 
water removed (g) X 100 

bulk volume of specimen (cm3) 
porosity (%) = 

TABLE I11 
Porosity of Mortars 

Maturity , Volume Porosity, 
Filler w I C  days fraction filler % 

Ottawa sand 0.4 
0.4 
0.4 
0.6 

Asbestos 0.6 
0.67 
1.10 
2.30 

0.1 
0.2 
0.4 
0.6 
0.052 
0.094 
0.139 
0.189 

36.9 
33.6 
25.4 
20.4 
49.9 
49.9 
59.5 
63.5 
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TABLE IV 
Loading of Hardened Cement Paste 

w I C  Maturity, days Volume loading, % 

0.4 

0.6 

1 
3 
7 

28 
1 
3 
7 

28 

39.4 
33.4 
22.9 
15.3 
47.1 
41.2 
32.7 
24.1 

Porosity of all mortar specimens is presented in Table 111. 
Volume loading of the specimens, in percent, is expressed as 

weight loaded (g) X 100 
volume loading (%) = 

P x vb 
where p is the density of the polymer (1.16 g/cm3) and V b  (cm3) is the bulk volume 
of the specimen. Volume loading of all HCP specimens is presented in Table 
IV. Volume loading of all mortar specimens is presented in Table V. 

Residual porosity ( E R )  is expressed as 

(3) 
CT - volume loading (%) 

100 
€ R  = 

Dynamic Mechanical Testing 

All specimens were tested in an apparatus developed by Kline.12 The speci- 
men is suspended by two cotton threads located just outside the nodes of the 
fundamental free-free flexural mode, approximately lh in. from the ends of the 
specimen. The specimen is excited in the audio frequency range by a magne- 
tostrictive transducer. The output signal is detected by a piezoelectric crystal 
pickup, amplified, filtered, and displayed both on a level recorder and an oscil- 
loscope. The dynamic modulus is calculated from the following expression: 

6. 1O617pL4fi2 E' = 
h2 

TABLE V 
Loading of Epoxy-Impregnated Mortars 

(4) 

Mortars w I C  " f  Volume loading, % 
~~ 

Ottawa sand mortars 0.4 
0.4 
0.4 
0.6 

Asbestos fiber mortars 0.60 
0.67 
1.10 
2.30 

0.1 
0.2 
0.4 
0.6 
0.052 
0.094 
0.139 
0.189 

22.7 
20.5 
17.0 
22.4 
39.7 
41.1 
52.9 
60.9 
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in the case of rectangular specimens, and from the expression 

0.6323(L/d) h f i 2  
L 

E' = 

for the case of cylindrical specimens where L is the length of the specimen (in.), 
p is the density of the specimen (g/cm3), h is the height (in.), d is the width (in.), 
w is the weight (g), and f l  is the fundamental frequency of vibration. 

For low-temperature measurements, specimens were cooled in a chamber 
surrounded by a Dewar flask containing liquid nitrogen (bp = 81'K). Testing 
was conducted at  a rate of 1'K per min. 

RESULTS AND DISCUSSION 

The modulus of HCP is a strong function of its porosity. This has been studied 
by Helmuth and Turk,13 Lawrence et al.,14 Sereda et al.,15 and others. Helmuth 
and Turk13 made a study of the moduli of HCP with porosities ranging from ET 
= 0.25 to ET = 0.67, where CT is the total porosity. By plotting the measured 
dynamic modulus E' versus (1 - C T ) ~ ,  they extrapolated to obtain a value of 74.4 
X 1O1O dynes/cm2 at  (1 - C T ) ~  = 1 (solid phase, no porosity). Also, Lawrence et 
al.14 found values of 60.7 X 1O'O dynes/cm2. In the Powers equation,16 then, 

Ec = Em(1 - t ~ ) ~  (6) 

where Ec is the modulus of the HCP and Em is the modulus of the nonporous 
solids. Helmuth and Turk suggest justification of this equation with a simple 
m0de1.l~ 

Using a value of Em (such as 74.4 X 1 O l o  dynes/cm2 shown above) for nonporous 
cement paste, one can combine constants of the filler (polymer) with the matrix 
(cement) to estimate the composite modulus E, for PICP and other systems using 
the theories available. The estimate can then be compared to other values. 
When applicable, a correction, based on either Powers' equation, eq. (6), or on 
one of the theories previously discussed, can also be made to correct for the re- 
sidual porosity due to unfilled regions of the system. Table VI lists the values 
used for the elastic constants of polymer, cement, fillers, and voids in making 
the calculations. 

A majority of theories developed to predict the elastic moduli of two-phase 

TABLE VI 
Elastic Constants of Materials Used 

Material 
Elastic modulus, 

(dynes/cmz) X Poisson's ratio 

Epoxy resin 3,318 0.334" 
Cement solids 74.413 0.2713 
Ottawa sand 75.814 0.2214 
Asbestos 17  5" 0.22b 
PICP calculated 0.27b 
Voids a 0.SC 

a Experimental value at 300°K (F). 
b Assumed value. No experimental data available. 
C Assume void filled with an incompressible fluid. 
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composite materials consider particulate or fiber-filled systems. The rule of 
mixtures relationship based on elementary isostrain conditions is the simplest 
of these and applies primarily to fibrous fillers oriented in a specific fashion. For 
instance, for fibers oriedted along the principal stress axis, E’ often follows the 
rule of mixtures re1ati0nship.l~ 

In particulate composites, the elastic modulus is often a more complex function 
of uf than a rule of mixtures relationship. In a direct approach to particulate 
filled systems, Hashin7 used isostress and isostrain estimates in the fillers and 
matrix with strain energy calculations to establish rigorous bounds for composite 
moduli. The gap between these bounds is rather large when the moduli of the 
matrix and filler differ considerably. 

Hasselman et a1.6 have applied a modification of Hashin’s theory7 to the 
problem of polymer-impregnated ceramics. Preliminary results for ceramic 
materials6 indicate fair agreement with the experimental data. Hasselman‘s 
expression for the elastic modulus of a polymer-impregnated porous material 
is given by 

1 + QGU 

Ec = Em ( 1 + J (7) 

where Em is the modulus of the nonporous solids and uf  is the volume fraction 
of filler polymer. 

A stress concentration factor CYG is given by the following expression: 

\(R + 1 ) 2  - ( K p  + 1)) 

where K = Ef/E,; p = 3 - 4v,; R = R1/Rz; Ef  is the modulus of the filler; Em is 
the modulus of the matrix; u, is Poisson’s ratio of the matrix; and R1 and Rz are 
the major and minor axes, respectively, of the ellipsoidal inclusion. The cor- 
rection factor y is introduced to satisfy boundary conditions and is given by 

For spherical phase geometry, the following expression is applicable: 

4 ( K  - 1)(1 - v,) 
( 3  - 4v,)(K + 1) 

ffc = 

However, application of this treatment to the present experimental results in- 
dicated that there was poor agreement between calculated and observed moduli. 

Goodie@ has derived the exact solution to the problem of a single spherical 
inclusion in a block of matrix material subjected to a uniform stress. By St. 
Venant’s principle, the perturbation in the stress field is effectively smoothed 
out in a relatively short distance. Thus, when particulate fillers do not approach 
each other too closely, the composite can be visualized as an array of blocks with 
spheres (filler) inside, and the modulus estimate would be that of Goodier. 
Kerner3 followed this model assuming no filler-matrix slippage, to estimate 
moduli for high uf values. His model was a sphere (filler) in a shell of matrix 
material surrounded by a third medium with composite properties. This ap- 
proach leads to a conservative (too low) estimate for the composite modulus. 
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Lewis and Nie1sen,lg Jenness and Kline,17 and others found Kerner’s prediction 
too low and note that the estimate is equivalent to the lower bound of Hashin’s 
t h e ~ r y . ~  

Kerner’s theory3 can also be applied to PICP. Kerner’s expression for shear 
modulus G ,  of a particulate composite with spherical filler particles is given by 

where G ,  = shear modulus of composite; G, = shear modulus of matrix; G f  = 
shear modulus of filler; u, = Poisson’s ratio of matrix; and uf = volume fraction 
of filler. Unfortunately, agreement between experimental and observed results 
is poor in this case as well. 

Wu9 has developed a comprehensive theory for fillers of various shapes 
(spheres, needles, and disks). Wu’s equations have been experimentally inves- 
tigated by Jenness,17 and, for a reasonably well-defined geometry of filler, the 
results were quite encouraging. 

Wu based his theory on Eshelby’s20 treatment of the strain field resulting from 
an ellipsoidal inclusion in a homogeneous isotropic matrix. For no slippage, the 
inclusion has uniform stress when the matrix has uniform stress at  relatively large 
distances from the filler. To determine the effective composite modulus, the 
stress at  intermediate points need not be known. Wu generalized results for 
closely spaced ellipsoidal fillers, averaging over all orientations. He obtained 
relatively complicated expressions for composites with randomly oriented filler 
particles. 

Wu’s relationship between the filler volume fraction uj and the elastic modulus 
E, of a particulate composite with spherical filler particles is given by 

where Em = elastic modulus of matrix; Ej = elastic modulus of filler; v, = 
Poisson’s ratio of matrix; uf = Poisson’s ratio of filler; and uc = Poisson’s ratio 
of composite. 

Results are presented in Table VII. In this table, E, represents the value of 
the composite modulus calculated on the basis of the two-phase model, eq. (12)’ 
assuming all porosity to be filled by polymer. A correction for residual porosity 
using eq. (12) with E f  = 0 gives the values in the column headed Eel. A correction 
for residual porosity using Powers’ equation, eq. (6)’ gives the values in the col- 
umn headed Ec2 Experimental values are designated by E’. Comparison with 
experimental results indicates fairly good agreement. 

The agreement between experimental and calculated results is quite surprising 
in view of the limitations inherent in Wu’s derivations. He assumed that there 
is no contiguity between the filler particles, that they are perfect spheres, and 
that perfect adhesion exists between the filler and the matrix. Tests of this 
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Fig. 1. Ratio of composite moduli (I??;) to matrix moduli (h‘,,,) for OSM of varying uf. 

theory versus experimental results on other PICP systems are necessary before 
its general validity can be established. 

Wu’s theory also can be applied to the prediction of the elastic moduli of PIM. 
In this case, the PICP is considered as the matrix and Ottawa sand or asbestos 
(Table VI) as the filler. 

TABLE VII 
Theoretical Predictions of Elastic Moduli: Wu’s Theory 

Elastic modulus, (dynes/cm*) x lo-’’ 
Maturity, fraction porosity 

w I C  days filler uf ER Era EC, EmC E’d 

0.4 1 
3 
7 

28 
0.6 1 

3 
7 

28 

0.394 
0.334 
0.229 
0.153 
0.471 
0.412 
0.327 
0.241 

Spherical Inclusions 

0.081 24.9 17.9 
0.111 31.2 20.9 
0.174 43.1 24.4 
0.21 7 52.3 25.9 
0.072 18.0 13.2 
0.103 23.3 15.8 
0.178 31.9 17.9 
0.241 41.7 19.0 

19.3 
21.9 
24.3 
25.1 
14.4 
16.7 
17.7 
18.2 

18.2 
20.0 
22.0 
23.4 
14.5 
17.2 
18.6 
19.8 

a Calculated from two-phase model (Wu’s equation). 
Calculated from Wu’s equation, eq. (12), with Ef = 0 and Em = E,. 
Calculated from Powers’ equation, eq. (6) ,  with ER = er and Em = E,. 
Experimental data. 
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Fig. 2. Ratio of composite moduli (gc) to matrix moduli (Em)  for AFM of varying uf. 

Values for epoxy PICP of wIc = 0.4 and seven-days maturity were used for 
the matrix values for PIM with uf = 0.1,0.2, and 0.4. Values of g,,, in these cases 
are 26.3, 22.0, and 13.8 (dynes/cm2) X 1Olo a t  100°K, 300"K, and 400"K, re- 
spectively. Values for epoxy PICP of wIc = 0.6 and seven-day maturity were 
used for PIM with uf = 0.6. Values of E', are 23.4,18.6, and 9.5 (dynes/cm2) X 
1O1O a t  100°K, 300"K, and 400°K in this case. Filler values are given in Table 
VI. 

Results using eq. (12) for spherical filler particles are presented in Figure 1. 
The ratio of the measured composite modulus E',to the measured modulus of 
the matrix J?Zm has been calculated for the various volume fractions of filler used. 
Results for T = 100"K, 300"K, and 400°K are presented. It is evident that 
agreement is best a t  low temperatures (100°K) and at  low volume fractions of 
filler (50.4). At high temperatures, considerable slippage between matrix and 
filler can occur; and at  high uf ,  agglomeration of filler particles can occur, both 
of which violate assumptions of Wu's theory. 

Results calculated using Wu's relationship, eq. (13), for needle-shaped fillers 
imbedded in a PICP matrix are presented in Figure 2. Asbestos fibers were used 
as the filler (see Table VI). In this case, no PICP was available with appropriate 
wIc ratios. PICP matrix moduli Em, therefore, were calculated from eq. (12). 
This was accomplished by calculating the PICP composite modulus E, based 
on known values for the cement solids and polymer. This PICP composite 
modulus is then used as Em in the next calculation, eq. (13), where PICP serves 
as the matrix and asbestos as the filler: 
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+ 

E m  = elastic modulus of matrix; E f  = elastic modulus of filler; urn = Poisson's 
ratio of matrix; uf = Poisson's ratio of filler; and uC = Poisson's ratio of composite. 
This equation represents Wu's relationship between the filler volume fraction 
uf and the elastic modulus E, of a particulate composite with needle-shaped filler 
particles. 

Using this procedure, values of E m  = 16.1 X lolo, 13.8 X lolo, 7.3 X lolo, and 
4.1 x 1010 dynes/cm2 for w/c  = 0.60,0.67,1.10, and 2.30, respectively, were cal- 
culated. Results indicate good agreement between experimental and calculated 
values. This may be expected in view of the low (<0.2) uf employed. 

CONCLUSIONS 

This study has shown that the elastic moduli of polymer-impregnated portland 
cement pastes having a wide variety of maturities and wIc ratios can be rather 
accurately predicted using presently available composite materials theory, 
provided that a low volume fraction of filler is employed and that temperatures 
remain a t  or below ambient. Wu's theory applied for spherical polymer inclu- 
sions in a rigid matrix, in particular, yields results which agree rather well with 
experimental data at  ambient temperatures. Elastic moduli of polymer-im- 
pregnated mortars can also be calculated, in this case using either experimental 
or calculated values for the matrix constants. Due to the significant amount 
of residual porosity remaining in polymer-impregnated cement pastes, it is 
suggested that a correction must be made to the calculated value of the moduli, 
either by use of Wu's formula or by a semiempirical porosity function. Although 
this approach should work well with other polymer-impregnated systems, its 
general validity remains to be established. 

Appendix 

Structure and Proportioning of the Epoxy Resin System 

The basic component of the epoxy resin system used in the present research was Epon 828, a di- 
glycidal ether of bisphenol A with the following structure: 
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Me OH Me 
I i /O\ 

CH2-CH-CHL-O- @-C-@-O-CH,-CH-CH,~ -@-C-@-OCH,--CH-CH, 

‘0’ [ ie I,> Ae 
where 6 represents the phenyl group. 

The average molecular weight of the resin is 370-384:l yielding a weight per epoxide (WPE) of 
185-192. An average WPE of 186 was chosen for calculational purposes. 

Since Epon 828 has a viscosity of 10,OOO to 15,000 cps a t  25OC, a monofunctional diluent, styrene 
oxide, was introduced at  a concentration of 25 parts per hundred of resin (phr) in order to reduce 
the viscosity of the mix. Styrene oxide has the following structure: 

O C H - - C H I  
-’ \ / 

0 
with a WPE of 120. 

Since a long pot life is needed to allow sufficient time for the epoxy resin system to penetrate into 
the cement, DEAPA (diethylaminopropylamine) was chosen as the curing agent. It has the following 
structure: 

C2H5 

C A  
/ ‘N--(cH?),-NH, 

Previous research22 has shown that mechanical strength and crosslinking are optimized when the 

On these bases, then, the system Epon 828DEAPA (25% SA)/styrene oxide (25 phr) was chosen 
concentration of DEAPA is at  25% of the stoichiometric amount (SA). 

in the present work as the basic mix for use in impregnation of HCP and mortars. 

The authors would like to thank Dr. Paul R. Blankenhorn for his advice and comments during 
discussions of the material covered by this study. This research was supported in part by a grant 
from the Pennsylvania Science and Engineering Foundation. 
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